Solution 1.3:6b
From Förberedande kurs i matematik 1
(Difference between revisions)
m (Lösning 1.3:6b moved to Solution 1.3:6b: Robot: moved page) |
|||
| Line 1: | Line 1: | ||
| - | {{ | + | When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus... |
| - | < | + | |
| - | {{ | + | |
| + | <math>0.4^{-3}>0.5^{-3}</math> | ||
| + | |||
| + | |||
| + | Another way to see this is to rewrite the two powers as | ||
| + | |||
| + | |||
| + | <math>0.5^{-3}=\frac{1}{0.5^{3}}</math> | ||
| + | and | ||
| + | <math>0.4^{-3}=\frac{1}{0.4^{3}}</math> | ||
| + | |||
| + | |||
| + | and because | ||
| + | <math>0.5^{3}>0.4^{3}</math> | ||
| + | (see exercise a), it follows that | ||
| + | |||
| + | |||
| + | <math>\frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}</math> | ||
| + | |||
| + | |||
| + | i.e. | ||
| + | <math>0.4^{-3}>0.5^{-3}</math> | ||
Revision as of 12:52, 15 September 2008
When a power expression has a negative exponent, the expression's value decreases when the base increases. Thus...
\displaystyle 0.4^{-3}>0.5^{-3}
Another way to see this is to rewrite the two powers as
\displaystyle 0.5^{-3}=\frac{1}{0.5^{3}}
and
\displaystyle 0.4^{-3}=\frac{1}{0.4^{3}}
and because
\displaystyle 0.5^{3}>0.4^{3}
(see exercise a), it follows that
\displaystyle \frac{1}{0.4^{3}}>\frac{1}{0.5^{3}}
i.e.
\displaystyle 0.4^{-3}>0.5^{-3}
