Solution 3.4:1b
From Förberedande kurs i matematik 1
m (Lösning 3.4:1b moved to Solution 3.4:1b: Robot: moved page) |
|||
| Line 1: | Line 1: | ||
| - | { | + | In the equation, both sides are positive because the factors |
| - | < | + | <math>e^{x}</math> |
| - | {{ | + | and |
| - | { | + | <math>3^{-x}</math> |
| - | < | + | are positive regardless of the value of |
| - | {{ | + | <math>x</math> |
| + | (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers, | ||
| + | |||
| + | |||
| + | <math>\ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)</math> | ||
| + | |||
| + | |||
| + | Using the log law, we can divide up the products into several logarithmic terms, | ||
| + | |||
| + | |||
| + | <math>\ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}</math> | ||
| + | |||
| + | |||
| + | and using the law | ||
| + | <math>\ln a^{b}=b\centerdot \ln a</math>, we can get rid of | ||
| + | <math>x</math> | ||
| + | from the exponents: | ||
| + | |||
| + | |||
| + | <math>\ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3</math> | ||
| + | |||
| + | |||
| + | Collecting together | ||
| + | <math>x</math> | ||
| + | on one side and the other terms on the other, | ||
| + | |||
| + | |||
| + | <math>x\ln e+x\ln 3=\ln 2-\ln 13</math> | ||
| + | |||
| + | |||
| + | Take out | ||
| + | <math>x</math> | ||
| + | on the left-hand side and use | ||
| + | <math>\ln e=1</math> | ||
| + | : | ||
| + | |||
| + | |||
| + | <math>x\left( 1+\ln 3 \right)=\ln 2-\ln 13</math> | ||
| + | |||
| + | |||
| + | Then, solve for | ||
| + | <math>x</math> | ||
| + | : | ||
| + | |||
| + | |||
| + | <math>x=\frac{\ln 2-\ln 13}{1+\ln 3}</math> | ||
| + | |||
| + | |||
| + | NOTE: Because | ||
| + | <math>\ln 2<\ln 13</math>, we can write the answer as | ||
| + | |||
| + | |||
| + | <math>x=-\frac{\ln 13-\ln 2}{1+\ln 3}</math> | ||
| + | |||
| + | |||
| + | in order to indicate that | ||
| + | <math>x</math> | ||
| + | is negative. | ||
Revision as of 12:55, 12 September 2008
In the equation, both sides are positive because the factors \displaystyle e^{x} and \displaystyle 3^{-x} are positive regardless of the value of \displaystyle x (a positive base raised to a number always gives a positive number). We can therefore take the natural logarithm of both numbers,
\displaystyle \ln \left( 13e^{x} \right)=\ln \left( 2\centerdot 3^{-x} \right)
Using the log law, we can divide up the products into several logarithmic terms,
\displaystyle \ln 13+\ln e^{x}=\ln 2+\ln 3^{-x}
and using the law
\displaystyle \ln a^{b}=b\centerdot \ln a, we can get rid of
\displaystyle x
from the exponents:
\displaystyle \ln 13+x\ln e=\ln 2+\left( -x \right)\ln 3
Collecting together
\displaystyle x
on one side and the other terms on the other,
\displaystyle x\ln e+x\ln 3=\ln 2-\ln 13
Take out
\displaystyle x
on the left-hand side and use
\displaystyle \ln e=1
\displaystyle x\left( 1+\ln 3 \right)=\ln 2-\ln 13
Then, solve for
\displaystyle x
\displaystyle x=\frac{\ln 2-\ln 13}{1+\ln 3}
NOTE: Because
\displaystyle \ln 2<\ln 13, we can write the answer as
\displaystyle x=-\frac{\ln 13-\ln 2}{1+\ln 3}
in order to indicate that
\displaystyle x
is negative.
